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Abstract—LoRa is widely deployed for various applications.
Though the knowledge of the channel occupancy is the pre-
requisite of all aspects of network management, acquiring the
channel occupancy for LoRa is challenging due to the large
number of channels to be detected. In this paper, we propose
LoRadar, a novel LoRa channel occupancy acquirer based on
cross-channel scanning. Our in-depth study finds that Channel
Activity Detection (CAD) in a narrow band can indicate the
channel activities of wide bands because they have the same
slope in the time-frequency domain. Based on our finding,
we design the cross-channel scanning mechanism that infers
the channel occupancy states of all the overlapping channels
by the distribution of CAD results. We elaborately select and
adjust the CAD settings to enhance the distribution features.
We also design the pattern correction method to cope with
distribution distortions. We implement LoRadar on commodity
LoRa platforms and evaluate its performance on the indoor
testbed and the outdoor deployed network. The experimental
results show that LoRadar can achieve a detection accuracy of
0.99 and reduce the acquisition overhead by up to 0.90, compared
to existing traversal-based methods.

I. INTRODUCTION

As a low-power and long-range technique, LoRa has re-

ceived extensive attention from industrial and academic circles

[1]. It is widely used in various IoT applications such as

localization service [2]–[5], environmental monitoring [6]–

[12], and wireless sensing [13]–[15]. It provides flexible

BW (Bandwidth) setting from 7.81KHz to 500KHz and SF

(Spreading Factor) from 5 to 12 to satisfy the requirements

of different scenarios. There are also many studies [16]–[20]

focusing on improving the performance of LoRa networks.

Nowadays, more than 130 operators globally provide large-

scale LoRa service [21]. The explosive growth of LoRa

devices significantly increases the development density and

the channel occupancy ratio.

Facing such ever-expanding LoRa networks, it is crucial to

monitor the channel occupancy to learn which channels are

in use. On the one hand, acquiring channel occupancy is the

prerequisite of network monitoring and management. We have

to know which channels are in use before we can sniff the

channel traffic or identify unauthorized illegal transmissions in

a specific channel. Besides, when natural disasters occurring,

quick channel occupancy detection can help rescuers search

for surviving communication channels and even survivors. On

the other hand, acquiring channel occupancy can help Medium

Access Control (MAC) designs to select desired channels.

For example, LMAC [22] relies on the channel occupancy

information to allow a node access good channels by CSMA.

However, efficiently acquiring the LoRa channel occupancy

is very challenging due to the large number of LoRa channels.

Different from wireless technologies such as WiFi [23], Zig-

Bee [24] that have strict standards of channel partition, LoRa

supports diverse channel partitions and allows channels to

overlap with each other. What’s worse, in a physical channel,

LoRa allows concurrent transmissions with different SF, which

results in more logical channels. Hence, a LoRa channel is

actually defined by the central frequency with specific BW and

SF of the Chirp Spread Spectrum (CSS) modulation. Then the

total number of LoRa channels is enormous. For a 500KHz

frequency band, LoRa allows 7 physical channels, including

four 125KHz, two 250KHz, and one 500KHz channels. For

each physical channel, LoRa can use SF from 5 to 12 to obtain

8 logic channels. Then we have 56 channels just in a 500KHz

frequency band. Taking the whole 915MHz ISM band of LoRa

(902.3MHz-914.9MHz) into consideration, we will have up to

1400 LoRa channels to be detected!

Such a large number of channels makes channel occu-

pancy acquisition difficult. Recent LoRa transceivers [25]

[26], provide LoRa CAD (Channel Activity Detection) to

detect activities in a specific LoRa channel by calculating

the cross-correlation of the received LoRa symbol and the

base up-chirp. If the result is beyond the predefined threshold,

CadDetected interrupt is set to indicate the channel is busy.

But directly using CAD to traverse a large number of channels

is infeasible. First, our measurement results in Section II

show that traversing all the channels in a 500KHz band once

can takes more than 15 seconds, which is time- and energy-

consuming. Second, we surprisingly find that CAD, which is

quite reliable in a single channel, is no longer reliable when

used in traversal detection. By carefully analyzing the results,

we find that CAD experiences lots of false positives, even

though we use the recommended CAD setting that is supposed

to avoid false positives. Our in-depth analysis reveals that

LoRa chirps with different BW and SF but have same slope in

the time-frequency domain result in a high cross-correlation

value when performing CAD in the overlapping narrow band,

leading to CAD false positives.

The fact that CAD in a narrow channel has false positives

caused by the wider channels inspires us to design a cross-

channel scanning method that uses CAD results in a narrow

channel to infer the occupancy of overlapping wide channels.



Our further in-depth studies verify the feasibility of cross-

channel scanning. We find that there are significant differences
in the distribution of CAD positives caused by different wide
channels within the same time. This is because the chirps with

same slope in different channels must have different symbol

duration and the number of symbols of different channels

within the same detection period will be different. This key

observation inspires us to leverage cross-channel scanning to

reduce the number of detected channels.
However, to accomplish such an idea, we still face three

key challenges. First, to get the distributions, we have to

perform multiple CADs. But the appropriate number of CADs

is hard to decide. Too few CADs cannot reliably obtain the

distributions while too many CADs will increase the baseline

overhead. Second, due to the asynchronization between CAD

and the LoRa symbol, distributions of CAD positives can

be distorted, resulting in accuracy degradation. How to cope

with the distorted distributions is challenging. Third, noise and

interference from environment can generate unexpected false

positives that disturb the distributions. How to eliminate their

influence is also challenging.
To solve these challenges, we propose LoRadar, a novel

LoRa channel occupancy acquirer that can quickly learn the

occupancy of a larger number of LoRa channels. Based on our

insightful observations, we propose the cross-channel scanning

mechanism that learns the occupancy of wider channels by

CAD in the narrow channel. We first carefully model the dis-

tributions of CAD positives for different narrow-wide channel

pairs to obtain the stable differentiation patterns. Then we se-

lect the appropriate number of CADs to achieve a good trade-

off between accuracy and overhead. Second, we investigate

the root cause of distribution overlapping and then design a

pattern correction algorithm to correct the shifted distribution

caused by false negatives. Third, we propose an adaptive

algorithm that dynamically adjusts the CAD parameters to

reduce unexpected CAD false positives caused by environment

noise. Finally, to further reduce the overhead, we design a

conditional speed-up strategy that leverages prior detection

results to opportunistically adjust the number of CADs.
The contributions of this work are summarized as follows.

• We propose LoRadar, a novel LoRa channel occupancy

acquirer based on cross-channel scanning. LoRadar can

efficiently learn the channel occupancy matrix to facil-

itate a diversity of LoRa applications such as network

monitoring and management and MAC designs.

• We find that distributions of CAD results in a narrow

channel can indicate activities in wider channels. Based

on this key insight, we design the cross-channel scanning

mechanism and solve several technical challenges, includ-

ing scanning setting selection and adaption, and detection

errors caused by distribution distortions.

• We implement LoRadar on commodity LoRa devices

and extensively evaluate its performance. The experimen-

tal results demonstrate that LoRadar can acquire the

LoRa channel occupancy with 0.95 accuracy within 1.5

seconds. The detection overhead is reduced by up to
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Fig. 1. LoRa channels to be detected in 915MHz ISM band.

87.3% with 72.5% accuracy improvement, compared to

the traversal-based method.

The rest of this paper is organized as follows. We introduce

the background and motivation of this work in Section II. Then

we present the design of LoRadar in Section III and evaluation

results in Section IV. We discuss the related work in Section

V and finally conclude our work in Section VI.

II. BACKGROUND & MOTIVATION

The recent LoRa chips such as SX1262 [25] and SX1276

[26] introduce Channel Activity Detection (CAD) to de-

tect LoRa symbols in a channel with given BW and SF.

CAD calculates the cross-correlation between the received

signal in one symbol duration Tsym and the template up-

chirp signal. If the value is beyond the predefined threshold

th, CadDetected interrupt will be triggered to indicate a

busy channel. Two crucial CAD parameters, CadDetPeak
and CadSymbolNum, can be configured to adapt to different

environments. CadDetPeak is positively related to th. In-

creasing its value is beneficial to reduce false positives caused

by noise. But a too high value will cause false negatives

of weak signals. CadSymbolNum is the minimum number

of continuous symbols that are detected before triggering

CadDetected interrupt. A larger CadSymbolNum helps

decrease false positives but brings longer execution time.

To acquire the channel occupancy by CAD, a naive way is

to traverse all the channels and perform CAD in each channel.

However, such a traversal-based method is too costly in terms

of time and energy. Fig. 1 presents the channel plan in [27].

We have up to 1400 LoRa channels to be detected in 915MHz

ISM band. Suppose we perform ten CADs in each channel,

the total acquisition time with the suggested CAD setting can

be up to 15 seconds for a single 500KHz band. Besides,

we surprisingly find that CAD, which is reliable in a single

channel, is no longer reliable when used in the traversal-based

channel occupancy detection. The accuracy is far below the

expectation because of the unexpected false positives.

After analyzing the pattern of false positives in depth, we

find that CAD not only detects the existence of the LoRa

chirp with given SF and BW but also responses to some
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Fig. 2. LoRa chirps with different BW but same slope.

other special chirps. More specifically, chirps that have the

same slope in time-frequency domain can also result in CAD

positives. The reason behind this phenomenon is that CAD

depends on cross-correlation computation to detect given LoRa

chirps. As shown in Fig. 2, LoRa symbols with 125KHz/SF7,

250KHz/SF9 and 500KHz/SF11 have the same slope in the

time-frequency domain. When performing CAD in the first

125KHz band, all of the three chirps can have a high cross-

correlation value and therefore cause CAD positives. Since

the slope of LoRa chirp depends on SF and BW, we identify

that a group of LoRa chirps will have the same slope when

satisfying the rule: BW doubles and SF increases by two.

Although false positives lower the detection accuracy, the

observation reveals that the narrow-band CAD can indicate the

channel occupancy of wider channels. We further investigate

the results and find that though chirps with same slopes

can all trigger CAD positives, the number of CAD positives

within the same detection time is different for different chirps.

From Fig. 2, we can clearly find that different chirps have

different symbol duration and then have different number of

occurrences in a narrow-band channel. Such a key insight

inspires us to achieve cross-channel scanning that uses narrow-

band CAD results to infer the occupancy of wider channels. By

this way, the number of detected channels can be significantly

reduced and the acquisition process can be accelerated.

Though attractive, implementing such an idea needs elab-

orate designs to address the CAD distribution distortions and

obtain the desired distribution with minimum overhead.

III. DESIGN

In this section, we first present an overview of LoRadar
and then introduce the design details of each component.

A. Overview of LoRadar

Fig. 3 shows the framework of LoRadar that consists of

four components. Given the channels to be detected, LoRadar
first decides the suitable CAD scanning setting, including the

number of CADs NCAD in a detection window and CAD

initial parameters. We analyze impacts of settings on both

detection performance and overhead to decide the appropriate

initial setting. During the online detection, LoRadar keeps

estimating the environment noise and dynamically adjusts the
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Fig. 3. Overview of LoRadar.

CAD setting accordingly. By eliminating false positives caused

by noise, LoRadar can keep the noise from disturbing the

desired distinguishable distributions. After deciding the CAD

setting, LoRadar calls for the CAD operation provided by

LoRa chips to obtain CAD results on each narrow channel.

Then the results are analyzed by the CAD pattern analysis

component. LoRadar decides which channels are occupied by

comparing the number of CAD positives CADP with the valid

range of CAD positives for each channel, including the narrow

and wide channels. Due to distribution distortions caused by

asynchronous probing and noise, LoRadar adopts a pattern

correction component to check results with CADP equals to

particular values where confusing distribution may occur. After

correction, the final detection results on channel occupancy

are used to update the channel occupancy matrix, which can

be used by other applications such as MAC protocols, traffic

sniffer, and network monitors. Besides, to reduce the detec-

tion overhead, LoRadar also designs a conditional speedup

component to opportunistically adjust the CAD setting for

next round according to the prior channel occupancy detection

result.

B. CAD Scanning Setting

To achieve robust and efficient cross-channel scanning, the

CAD scanning setting should be carefully designed, including

CAD parameters and the number of CADs in a detection

window. From the analysis in Section II, we have learn that

we can use a CAD detection window with NCAD continuous

CADs to infer the occupancy states of different channels.
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Fig. 4 presents an example of CAD results when three channels

with the same slope in the time-frequency domain. The LoRa

channel is denoted as C(BW,SF) to indicate a channel with

bandwidth of BW and spreading factor of SF . We perform

CAD with NCAD = 3 in the first 125KHz channel. Each CAD

duration TCAD consists of the sampling time Tdet and the

computing time Tcal , which are described by the light and dark

gray areas in Fig. 4. Due to the different symbol duration of

these three channels, the number of symbols occur in one CAD

detection window are different. Hence, the number of positive

CAD results CADP will be 3, 2, and 1 for channel C(bw,s f ),

C(2bw,s f+2), and C(4bw,s f+4), respectively. Besides, CADP will

be 0 when all channels are idle. Then, we can scan the

four narrow channels to infer the channel occupancy of all

overlapping channels. The example reveals that NCAD = 3 is

enough to differentiate the occurrence of different channels.

However, using only three CADs in a detection window

cannot provide robust distribution patterns due to the small

difference between different patterns. The unexpected CAD

false positive or negative results can easily confuse the channel

occupancy judgement. Hence, we increase NCAD to enlarge

the difference between distributions. But blindly using a large

NCAD significantly increases the baseline overhead in terms of

both detection delay and energy consumption.

To determine the suitable CAD setting that can provide

robust results with limited overhead, we first model the rela-

tionship between CADP and the number of occurred symbols

of different channels with various NCAD. Assuming CAD de-

tection window is aligned with the symbol window, N(BW,SF)
sym ,

the number of occurred symbols within the detection window

for channel C(BW,SF), can be calculated by:

N(BW,SF)
sym = [

NCAD ×TCAD −Tcal

T BW,SF
sym

] (1)

where T (BW,SF)
sym is the symbol duration for channel C(BW,SF)

and [·] denotes the rounding operation. Since during the Tcal
of final CAD, no signal is received and the final CAD result

will not be influenced, we remove it from calculation. Suppose

T (bw,s f )
sym is t, then T (2bw,s f+2)

sym and T (4bw,s f+4)
sym should be 2t and

4t. For the commonly used BW of 125kHz, TCAD is about 1.6t

TABLE I

THE VALID CAD(BW,SF)
valid FOR DIFFERENT CHANNELS AND THE MINIMUM

DIFFERENCE AMONG CHANNELS WITH DIFFERENT NCAD .

NCAD

(BW,SF)
Idle (4bw,sf+4) (2bw,sf+2) (bw,sf)

minimum
difference

3 0 1 2 3 1
5 0 2 4 5 1
7 0 3 5 7 2
9 0 4 7 9 2

11 0 4 9 11 2
13 0 5 10 13 3
15 0 6 12 15 3

TABLE II

THE VALID CAD(BW,SF)
valid FOR CHANNEL C(BW,SF) .

Channel C(BW,SF) Idle (4bw,sf+4) (2bw,sf+2) (bw,sf)

CAD(BW,SF)
valid 0 {3,4} {5,6} 7

because Tcal is about 0.6t [28]. Using t to rewrite Eq. (1), we

can obtain the following equations.

N(BW,SF)
sym = [

1.6×NCAD −0.6

m
] (2)

where m = 1, 2, 4 for (bw,sf), (2bw,sf+2), (4bw,sf+4). Then,

we can calculate the CAD(BW,SF)
valid for different channels and

measure the minimum difference among the overlapping chan-

nels with different NCAD by:

CAD(BW,SF)
valid = min{N(BW,SF)

sym ,NCAD} (3)

The results are shown in Table I. We can observe a step growth

of the minimum difference among channels with the increase

of NCAD. To obtain robustness, increasing NCAD to 13 to obtain

a minimum difference of 3 is too costly. Hence, in our current

implementation, we select NCAD = 7 to balance the robustness

and time consumption.

The above calculation has an assumption that CAD detec-

tion window is aligned with LoRa chirps. But in practice, such

an assumption rarely holds and more symbols can occur in

a detection window. Namely, for a given channel C(BW,SF),

the valid CADP can be {CAD(BW,SF)
valid ,CAD(BW,SF)

valid +1}. Given

NCAD = 7, the CAD(BW,SF)
valid are shown in Table II. Note that

since CADP cannot exceed NCAD, CAD(bw,s f )
valid is only 7. For the

idle case, the asynchronization will not cause false positives,

then its valid CADP is still 0.

Besides NCAD, we also optimize the CAD parameter,

CadSymbolNum. By default setting [28], CadSymbolNum
is set to 2 to avoid false positives. However, we want to

encourage helpful false positives to achieve cross-channel

scanning. What’s more, using CadSymbolNum of 2 means

each CAD is over two symbols, which takes more time. Hence,

we set CadSymbolNum to 1 in our design to achieve cross-

channel scanning with less overhead.

To verify the effectiveness of our setting, we perform a

validation experiment to study the detection error rate and
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Fig. 5. Error rate and time cost when using different NCAD.

time cost when using different NCAD. The results are shown in

Fig. 5. We can find the time cost increases linearly with NCAD,

as expected. We can also find that NCAD = 7 can dramatically

reduce the error rate to 0.1. Further increasing NCAD can only

bring marginal improvement but have much larger time cost.

The results verify our setting can provide a good balance

between accuracy and time cost.

C. Adaptive CAD Setting

The results in Fig. 5 show that though LoRadar adopts a

relaxed valid range of CAD(BW,SF)
valid to enhance the robustness,

the detection error rate is still higher than expectation. We

further analyze the CAD positive distributions to investigate

the reason behind. Without losing generality, we take the re-

sults of channel C(125KHz,SF7), C(250KHz,SF9) and C(500KHz,SF11)

as the example. For other channel groups, the results are

similar. We plot the CAD positive distributions of these three

channels in Fig. 6. We can clearly find four frequency peaks

that correspond to idle and other three channels. But for all

the channels, there exist cases where CADP is out of the

valid range in Table II. The overlapping distributions result in

confusion of channel occupancy and lead to detection errors.

The overlapping distribution problem for a channel can be

divided into two cases, the left shifted overlapping occurs

when CADP < CAD(BW,SF)
valid and the right shifted overlapping

occurs when CADP >CAD(BW,SF)
valid +1. The reason behind the

left shift is that LoRa chirps can happen in Tcal and then the

node fails to capture chirp activities, leading to CAD false

negatives. To cope with the left shift, we propose a pattern

correction algorithm in the CAD pattern analysis component

that will be introduced in Section III-D. On the other hand,

the right shift is the result of false positives caused by the

unexpected interference from the ambient environment.

In background section, we have discussed that the CAD

parameter CadDetPeak can suppress false positives. The

default setting of CadDetPeak is recommended based on

the environment with noise strength of -115dBm [28]. But

in practice, the coexisting interference strength can be larger

than that, leading to false positives. However, using a too high

CadDetPeak will cause false negatives for the weak signals,

which is unwanted to both communication and occupancy

detection. How to dynamically adjust its value is non-trivial.
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Fig. 6. The distribution of CADP when NCAD is 7.

TABLE III

THE FALSE POSITIVE RATE OF CAD WITH DIFFERENT CADDETPEAK

UNDER DIFFERENT NOISE INTENSITIES.

Noise (dBm)

CadDetPeak
22 25 28 31

[−75,−55) 0.17 0.11 0.09 0.00

[−95,−75) 0.14 0.13 0.01 0.01

[−115,−95) 0.08 0.01 0.00 0.00

To solve this problem, we propose an RSSI-based adaptive

CAD setting algorithm. Based on our measurements in various

environments, we find that RSSI can reflect the interference

intensity and then guide the selection of CadDetPeak. The

measurement results are shown in Table III. We can find that

to obtain a false positive rate lower than 0.01, CadDetPeak
should be set differently for different noise intensities. But for

every 20dBm increase of the interference strength, increasing

CadDetPeak by 3 is good enough.

Based on this observation, we propose the RSSI-based

CAD parameter adaption method. We first obtain the average

RSSI value RSSIave to learn the noise intensity in channel

before performing CAD. The RSSI for recommended setting

is denoted as RSSImin =−115dBm. Then we can calibrate the

value of CadDetPeak by adding an offset, δ , which can be

calculated as follows.

δ = k×Rstep (4)

where Rstep is set to 3 according to our empirical experience,

and k is:

k = �RSSIave −RSSImin

20
�+1 (5)

Then we add δ to the recommended setting in [28] when

performing CAD. Note that a node only takes about 2ms to get

RSSIave in a CAD window, which incurs negligible overhead.

Another adaptive CAD setting is the number of CADs

executed in each channel. To reduce the energy consumption,

a node will first periodically perform CAD, each of h times.

The period is set according to the expected channel activity

occurrence probability and h is smaller than NCAD. When CAD

reports positive during the periodical h executions, LoRadar
starts executing CAD NCAD times continuously to obtain the
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distribution patterns. If no positive reports during h times

CAD, the channel is regarded as idle.

D. Pattern Analysis

After performing CAD in the channel, we can obtain the

CAD result, SCAD, a sequence of seven CAD results, in which

0 and 1 represent negative and positive respectively. The

pattern analysis component first classifies the CADP according

to the CAD(BW,SF)
valid in Table II. Due to our adaptive CAD setting

mechanism, we solve the right shift problem. Hence, we only

consider the left shift problem here, namely, the false negatives

due to the asynchronization between CAD detection window

and symbol window.

By analyzing the results in Fig. 6 and Table II, we can learn

that the left shift problem will cause confusions at CADP =2,

4, and 6 due to the distribution shift of channel C(4bw,s f+4),

C(2bw,s f+2), and C(bw,s f ). For CADP = 2, we can simply regard

it as channel C(4bw,s f+4) because there is no other valid channel

in this range. For CADP = 6, it can be recognized as C(2bw,s f+2)

because the probability that C(bw,s f ) shifts to 6 is small due to

the low probability that one whole short symbol completely

falls out of the CAD detection period. The results in Fig. 6

shows that the false negatives of the left shift for C(bw,s f ) is

only 0.02. For CADP = 4, it has a high occurrence frequency

and brings serious accuracy degradation. As a result, we have

to differentiate they are the valid results of the wider channel

C(4bw,s f+4) or the left-shifted results of the narrower channel

C(2bw,s f+2).

According to above analysis, we can further extend the valid

CAD(BW,SF)
valid for different channels in Table IV. Specially, when

CADP = 4, the results will be further corrected by our pattern

correction method. Another special case is CADP = 1. Since

the probability that C(4bw,s f+4) shifts to CADP = 1 is low, we

simply regards CADP = 1 as idle.

We propose a trip-point based CAD pattern correction

method to solve the confusing left shift problem. The trip point

is defined as the symbol boundary between chirps during two

continuous CAD positives. Since a trip point happens at the

boundary of two chirps, it can indicate the start of a symbol.

Then we can infer the active channel by the location of the

next CAD positive, because the different periods of a symbol

for different channel will lead to different locations of the next

positive. For example, in Fig. 7, the trip point that happens at

Eliminated

Fig. 8. The distribution of CADP with NCAD = 7 after pattern correction.

TABLE IV

THE ROBUST VALID RANGE CAD(BW,SF)
valid FOR CHANNEL C(BW,SF) .

Channel (BW,SF) Idle (4bw,sf+4) (2bw,sf+2) (bw,sf)

CAD(BW,SF)
valid {0,1} {2,3,4} {5,6} 7

the first and second CADs indicates that there is a symbol

starting in the second CAD, which is denoted as RCAD = 2.

Hence, if CADRCAD+3 and CADRCAD+4 are both positive, then it

must be C(2bw,s f+2) in use because they are the multiple of the

symbol period of C(2bw,s f+2). Based on above condition, our

pattern correction algorithm tests the hypothesis that CADP = 4

is caused by C(2bw,s f+2). If the hypothesis doesn’t hold, we

regard CADP = 4 is the valid result of C(4bw,s f+4). For the

example in Fig. 7, we can find that the fifth and sixth CADs

are both positive, then the hypothesis holds. We can correct

the identification result from C(4bw,s f+4) to C(2bw,s f+2).

By pattern analysis, we can effectively remove false pos-

itives by parameter adaption and correct false negatives by

pattern correction. We plot the distribution of CADP after

correction and parameter adaptation in Fig. 8. The eliminated

errors are highlighted by the grid shadow. We can find that

the frequency of each overlapping distribution is lower than

0.03. The results can demonstrate the robustness of our cross-

channel scanning design.

For the crowded spectrum that different channels occur

in the same detection window in a narrow channel, we can

leverage the detection results from neighboring channel to

judge the state of the wide channel they shared.

E. Conditional Speedup

To further reduce the time delay, we leverage the previous

detection result to opportunistically reduce NCAD. For narrow

channels covered by a wider channel, if one of them has

already identified the state of the wide channel, then NCAD
can be reduced because we only need to judge the state of

the narrow channel. Fig. 9 shows an example of conditional

speedup. When the CAD results in the narrow channel CH2

are all negatives, indicating the idle state of two wider chan-

nels. Then we can reduce NCAD for the neighboring narrow

channel CH1 because we only need a small number of CADs

to judge the state of the neighboring channel .
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Fig. 9. Conditional speedup.

Our conditional speedup method works as follows. When

wide channels are idle, we can safely reduce NCAD to �NCAD
2 �

for the following narrow channels because there is no wider

channel causes confusing false positives. But when the wide

channels are busy, we adopt a conservative speedup principle.

We only reduce NCAD to �NCAD
2 � when the much wider channel

C(4bw,s f+4) is detected but keep NCAD unchanged when the

channel C(2bw,s f+2) is detected as busy. This is because the

activities in channel C(2bw,s f+2) can cause false positives and

disturb the distributions if reducing NCAD.

IV. EVALUATION

A. Experiment Setting

We implement LoRadar on commodity LoRa platforms

with STML073RZ MCU and SX1262 LoRa transceiver. To

evaluate the performance of LoRadar, we build an indoor

testbed and deploy a real-word outdoor LoRa network.

The indoor testbed consists of 20 nodes, as shown in

Fig. 10(a). One of the nodes acts as the channel occupancy

acquirer and the other nodes are LoRa users, each of which

runs in a selected channel in the 900MHz frequency band.

Fig. 10(b) shows the outdoor deployment of a fifteen-node

LoRa network in a 63,206m2 campus area, where 3 nodes

are deployed in each location. We control the distance and

transmission power to obtain LoRa links with different SNR.

When evaluating under high channel occupancy ratios, we let

each node performs channel hopping to emulate the occupancy

of multiple channels.

For comparison, we implement two methods as baseline.

The first one is the naive traversal used in existing methods

[22]. We also implement an improved traversal method by

using a two-step detection that can reduce the time cost. For

each traversed channel, the adaptive traversal method will first

perform a small number of CADs with our efficient setting and

only execute NCAD CADs with the default setting when the

first phase reports a positive CAD. By this way, the adaptive

traversal method will reduce time cost when channel is idle.

We alternately execute the three methods on one node to

compare the performances of them. Without losing generality,

our experiments focus on the performance when detecting

56 LoRa channels in a 500KHz frequency band. For more

wider frequency band, LoRa has to divide them into physical

channels with bandwidth up to 500KHz. As a result, the

Acquirer
(a) Indoor testbed devices

286m

22
1m

Acquirer Deployment 
Location

(b) Outdoor deployment

Fig. 10. Indoor and outdoor LoRa networks

performance of multiple 500KHz bands can be simply the

multiple of single 500KHz band.

B. Performance of LoRadar under Different Conditions

The design goal of LoRadar is efficiently and accurately

acquiring LoRa channel occupancy. We first evaluate the

performance of LoRadar in different conditions. We conduct

the experiments on our indoor testbed and compare LoRadar
with the baselines.

1) Different Ratio of Occupied Channels: We first in-

vestigate the performance under different ratio of occupied

channels. We vary the ratio of occupied channels from 0 (idle)

to 0.7. Fig. 11 shows the time consumption and detection

accuracy. From Fig. 11(a), we can find that with the increase

of the ratio of occupied channels, naive traversal keeps a high

time consumption, 11.0s. The adaptive traversal has a low

time consumption when the ratio is low because of our two-

step CAD improvement. But when the ratio increase, the false

positives caused by other channels will significantly increase

the number of CADs executed. Then adaptive traversal has

an obviously increased time consumption, which can be 8.4s
when the ratio is 0.7. Thanks to the cross-channel scanning,

the time consumption of LoRadar only increases from 1.0s
to 2.1s, when the ratio increases from 0 to 0.7. LoRadar can

reduce the time consumption by up to 90.1% and 74.6%, com-

pared to the naive and adaptive traversal methods respectively.

Though fast, LoRadar achieves the highest accuracy among

all the methods. The accuracy of LoRadar only decreases

from 0.99 to 0.91 when the ratio increases from 0 to 0.7. But

for the traversal-based method, the accuracy can be lower than

0.6. This is because LoRadar can distinguish the positives
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Fig. 11. Performance under different ratio of occupied channels.
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Fig. 12. Confusion matrix when the ratio of occupied channels is 0.3.

caused by different channels with the same chirp slope. But

the traversal-based methods will judge the current channel

as busy as long as CADs are positive, which causes serious

false positives when the ratio of occupied channels is high.

In Fig. 12, we present the confusion matrix of LoRadar and

adaptive traversal when the ratio of occupied channel is 0.3.

We omit the results of naive traversal because it is similar to

the adaptive method. We can clearly observe a much higher

false positive rate because the activities in wider channel cause

CAD positives of the idle narrow channels.

2) Different SNR: We then study the performance of Lo-
Radar under different SNR. Fig. 13 presents the results when

we vary the median of SNR from -13dB to 11dB. The ratio

of occupied channels is set to 0.3. From Fig. 13(a), we

can find that LoRadar maintain a stable time consumption,

which is 1.4s on average. Fig. 13(b) shows that LoRadar can

achieve the high accuracy for all the SNR settings. The average

accuracy is 0.95. This is because the cross-correlation of CAD

doesn’t depend on SNR and can detect signal with a low SNR.

The other two baseline methods also have stable performance

because they are also based on CAD. But due to the time-

consuming traversal, the average time consumption of naive

traversal and adaptive traversal is 10.9s and 3.8s, which are

7.8× and 2.7× larger than the time consumption of LoRadar.
And due to inability of recognizing false positives, naive and

adaptive traversal methods achieve the accuracy of 0.57 and

0.58, which are 40% and 39% lower than LoRadar’s accuracy.

3) Different Noise Intensity: We also study the perfor-

mance under various noise intensity. The results are shown

in Fig. 14. We observe similar results to Fig. 13. The average

time consumption of naive traversal, adaptive traversal, and

LoRadar are 11.0s, 3.8s, and 1.4s respectively. LoRadar still

achieves the highest accuracy, which is 0.94. The naive and

adaptive traversal methods can only achieve the accuracy of
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Fig. 13. Performance under different SNR.

0.57 and 0.56 on average. The stable accuracy of LoRadar
demonstrates that our adaptive CAD settings can effectively

avoid the false positives caused by varying noise intensities.

Two baseline methods also achieve the stable accuracy be-

cause they use the recommended CAD setting with a high

CadSymbolNum. Though they can resist the varying noise,

their setting is time-consuming.

C. Performance of LoRadar’s Components

1) Pattern Correction: To study the performance of pat-

tern correction algorithm, we compare the performance of

LoRadar with and without pattern correction. Fig .15 shows

the accuracy results when varying the ratio of occupied chan-

nels. For LoRadar without pattern correction, the accuracy

significantly decreases from 0.99 to 0.81 when varying the

ratio from 0 to 0.7. The more channels are occupied, the

higher probability of overlapping distributions is. Hence, the

performance degrades. But with the help of pattern correction,

LoRadar can keeps an accuracy of 0.91, which is 12.3%

higher than LoRadar without pattern correction. The results

validate the efficiency of our pattern correction algorithm.

2) Conditional Speedup: The conditional speedup mod-

ule aims to reduce the time consumption by leveraging the

previous detected results. We compare the performance of

LoRadar with and without conditional speedup in Fig. 16.

From Fig .16(a), we can find that conditional speedup can

reduce the time consumption by up to 0.29s. On average, the

time consumption of LoRadar with conditional speedup is

8.6% lower than the time consumption of LoRadar without

conditional speedup. Meanwhile, from Fig .16(b), we can find

that conditional speedup doesn’t degrade the accuracy.

D. Outdoor Deployment

We also evaluate LoRadar in an outdoor environment. 15

nodes are deployed at five locations in a campus, as shown

in Fig. 10(b). We emulate different ratio of occupied channels

by turning on different number of nodes and enabling channel

hopping. The results are shown in Fig. 17. Fig. 17(a) shows

that LoRadar achieves the highest accuracy among the three

methods. The average accuracy of LoRadar is 0.94, which

is 26.2% and 26.9% higher than the naive and adaptive

traversal methods on average. From Fig. 17(b), we can find that

LoRadar can reduce the time consumption of the naive and

adaptive traversal methods by 50.7% and 85.6% on average.

The results are similar to the results on the indoor testbed.
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Fig. 14. Performance under different noise intensity.
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Fig. 16. Performance of LoRadar with and without conditional speedup.

The results show that LoRadar can effectively acquire LoRa

channel occupancy in both indoor and outdoor environments.

V. RELATED WORK

According to the detection object, channel occupancy detec-

tion can be divided into: single channel occupancy detection

that learns the activities in a specific channel, and multiple

channel occupancy detection that learns which channels are in

use for the whole spectrum.

For single channel detection, RSSI is widely used in WiFi

and Zigbee. However, RSSI based methods do not work for

LoRa because the LoRa CSS signal can be below the noisy

floor. Besides, LoRa supports the multiplexing of a physical

channel by different SF. Semtech provides CAD in recent

LoRa chips to detect the LoRa activity in a channel. Existing

studies [22], [29]–[33] have verified that CAD can effectively

detect the channel occupancy in a single channel. DeepSense

[34] proposes a deep learning based method to achieve carrier

sensing from the spectrogram of a channel. Existing studies

about concurrent decoding [35]–[39] detect LoRa traffic by

preamble detection.

For multiple channel detection, LMAC [22] combines the

naive traversal-based CAD detection and information from the

gateway to build the global channel occupancy matrix. But

the traversal-based method is inefficient. The LoRa sniffer

is designed in [40], [41]. They leverage the multi-channel

reception ability of LoRa gateway chips or software-defined

radio to monitor the LoRa packets. Besides the hardware

restriction, they cannot detect the activities of channels with

different BW at the same time. Our study focuses on multiple

channel occupancy detection. Different from existing method,

we propose the cross-channel scanning based on our new

finding that CAD in narrow band can indicate the activities
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Fig. 17. Performance in outdoor deployment.

of channels with wider bands. Hence, we achieve an efficient

LoRa channel occupancy acquirer.

VI. CONCLUSION

In this paper, we propose LoRadar, a cross-channel scan-

ning based LoRa channel occupancy acquirer that can quickly

learn the occupancy state for a large number of LoRa chan-

nels. Our in-depth study finds that CAD on a narrow band

can indicate the occupancy states of overlapping channels

with wider bands. Based on this key insight, we propose

the cross-channel scanning method that can distinguish the

channels based on the distributions of CAD results on a narrow

band. We elaborately select the CAD setting and propose a

RSSI-based CAD adaptation method to obtain the credible

distribution. We propose the pattern correction algorithm to

enhance the detection accuracy. We also design a conditional

speedup mechanism to further reduce the detection overhead.

The experimental results show that LoRadar can achieve the

detection accuracy of 0.99 and reduce the time consumption

by up to 0.90, compared to existing traversal-based methods.

The authors have provided public access to their code at

https://github.com/yufu186/LoRadar-INFOCOM-2022.
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